
I N T E N S I F I C A T I O N  OF  MASS T R A N S F E R  IN A 

C U R R E N T - C A R R Y I N G  F L U I D  AT H I G H  P E C L E T  N U M B E R S  

A.  D. P o l y a n i n  a n d  P .  A.  P r y a d k i n  UDC 532.72 

Two ax i symmet r i c  problems re la t ing to mass  t r an s f e r  in a sys tem consist ing of a solid body 
and an e lec t r i ca l ly  conducting fluid a re  examined. 

In the diffusion boundary layer  approximation analyt ical  solutions a r e  obtained for two s teady-s ta te  prob-  
lems  of convect ive diffusion to the surface  of nonconducting solid bodies in a flow of viscous e lec t r i ca l ly  con-  
ducting fluid. In [1-8] the same approximation was used to investigate diffusion for di f ferent  modes of flow of 
a viscous incompress ib le  fluid over  a par t ic le .  In [7-8] the fluid was assumed to be e lec t r i ca l ly  conducting and 
the ef fec t  of the e lec t romagnet ic  field was taken into account. 

1. We consider  steady convective diffusion to the spher ica l  surface of a solid body in an ax i symmet r ic  
laminar  flow of viscous  incompress ib le  fluid. We assume that the P~clet  number is high (diffusive t r ans fe r  of 
ma t t e r  over  the sur face  of the solid can then be neglected in compar ison  with normal  t r ans fe r  ) ; the surface  of 
the solid body complete ly  absorbs  the dissolved substance in the liquid, and in the flow core  (outside the diffu- 
sion boundary layer)  the concentrat ion is constant.  

The aim of the p resen t  work was to calculate  the total  diffusive flows t o n  spher ica l  surface  in the two 
special  cases  deal t  with below. 

With a p re sc r ibed  s t r e am function we can use the resu l t s  of [3] (obtained in the diffusion boundary layer  
approximation),  which for the d imensionless  total  flow to the par t  of the spher ica l  surface  enclosed between 
angles 0- and 0 +, have the form 

1=~6~/3F_ ~ ( 4  ) A2/3 (0+ ' O_)Pe~/3 ' 

(1) 

The cha rac t e r i s t i c  scales  he r e  a re  the radius of the spher ica l  sur face ,  the charac te r i s t i c  flow veloci ty,  
and the concentra t ion outside the diffusion boundary layer  (in the flow core) .  Adjacent points of inflow and out-  
flow cor respond  to angles 0- and 0 +. 

The inflow (outflow) point is the c r i t i ca l  point of the body sur face ,  in whose vicini ty the normal  veloci ty  
component of the fluid is d i rec ted  toward (away from) the surface.  Angles O- and O + a re  given by the following 
re la t ions  [3]: 

/6 J 
Fig. 1. Relat ion B (b). 

O~ 8 /8 b 
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f 0-)  = o, n (o-) < o; f (o +) = o, tt (o +) > o; sin o t l  (o) - -  dr/dO. (Z) 

2. We invest igate  s t eady - s t a t e  convect ive diffusion of m a t t e r  to the su r face  of a solid nonconducting 
sphe re  in a flow of v iscous  e lec t r i ca l ly  conducting fluid on the assumpt ion  that  far  f rom the sphere  the liquid 
ve loc i ty  U and e lec t r i c  c u r r e n t  dens i ty  j a r e  constant  and have the s ame  direct ion.  

The flow field of this  p rob lem for  low Reynolds numbers  was obtained in [9] by the method of matched  
asympto t ic  expansions:  

ap ---- (1/4) ( r - -  1)~sin20 {[1 q- (3 -}-• Re/8 ](2 + r -~)--  

--  (3/8) Recos0 [2 + r -i  -k- r -2 + (• (2 + 4r -t q- r-2)]}, • = 0 (1), 

1 Re (12 + 7• sin~ 0 (b ~ cos 0), (3) f(o)= 3-2 

( 8  ) (  7 ) - , ; T  < b < ~  ' b =  -~e -1-3+• 4+-3-• 3 

where the function f(0) is defined as in (I). 

When 3/7 < b < 1 a region of closed circulation is formed in the rear of the sphere, but when b m 1 
t h i s  region is absent .  Using re la t ions  (9.), we obtain the following va lues  for the angles 0- and 0 § 

0 - = ~ ,  0 + =  [ arc cos b, b ~ l ,  
[ o , 0 / > . i .  

Using express ion  (1), we obtain the total  diffusive flow to the sphere  

7 ]lla I---- [1Re(4q----~)  B (b) Pe l /a, 

B (b) = { 1.91 [2 (b z + 3) E (k~) - -  (3- -  b) (1 - -  b) F (ki)l :/a, 3 /7< b < 1, (4) 
2.41 (1 -+- b)l/a [(bZ + 3) E (l~)--b (b - -  1) F (kz)]2/a, b ~ 1, 

B (3/7) = 5.41, B(b.-,-oo)--~3.2562/a, 

kx2 = (1 q- b)/2, k~ = 2/(1 -}- b), 

where  F (~) and E (k)  a r e  comple te  el l ipt ic  in tegra l s  of the f i r s t  and second kind, respec t ive ly .  

The re la t ion  B(b )  for 3/7 <b _< 20 is shown in Fig. 1. In the calculat ion of the to ta l  diffusive flow to 
the sphere,  the region of c losed c i rcu la t ion  was ignored. 

It is apparen t  that  with inc rease  in cu r ren t  densi ty  the to ta l  diffusive flow to the pa r t i c l e  i nc r ea se s ,  e .g. ,  
when Re = 0.5 an i nc rea se  in n f rom 0 to 10 leads  to an inc rease  in the flow by  13%. 

3. We consider  diffusion of m a t t e r  to the inner sur face  of a hemisphe r i ca l  ladle  comple te ly  filled with 
v iscous  e l ec t r i ca l ly  conducting fluid. We a s s u m e  that  the ladle is not e l ec t r i ca l ly  conducting, and in the center  
of  the f lat  f r ee  sur face  there  is a point source  of cu r r en t  of constant  s t rength  J0, causing a flow within the 
ladle (Fig. 2). 

In the Stokes approximation the stream function of such a flow is obtained in the form of a series [10] 

2 ~ =  (1 --Ix2) r(1 --r~)2 ~=,a2~ (1-l-2r~+3r4-]-"" -q-nr2n-2) ~ P2~ Ox)' (5) 

a2. = ~ (4n q- 1)P2. (0) [4n z (n + 1) (2n ~ 1) (2n q- 1)z] -I, ~a -=-- cos O, 

where  the s t r e a m  function is dedimensional ized with r e s p e c t  to the c h a r a c t e r i s t i c  veloci ty.  

In the cour se  of solution of the ladle su r face  the concentra t ion will  v a r y  continuously with t ime  and, 
hence,  for  the fluid contained in the ladle diffusion will  be  unsteady. The cha rac t e r i s t i c  t ime  of va r i a t ion  of the 

Fig. 2. S t reaml ines  in ladle. 
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concent ra t ion  in the flow core  (outside the diffusion boundary layer)  will  be on the o rde r  of V/ (4vaDPeV3)  and 
the t ime  to es tabl ish diffusion in the boundary l ay e r  is  tD N a~Pe-~-/3D-~. Hence, when Pe-~ / 3 << 1 diffusion in  
the boundary l aye r  can be r ega rded  as quasisteady,  but the var ia t ion  of the concentra t ion with t ime  is  pa ra -  
m e t r i c .  

It should be noted that inside the ladle the flow proceeds along closed streamlines and, hence~ the condi- 
tion of inflow in the vicinity of the critical point 0- = 0 is given by the concentration carried by the flow from 
the interior of the solution along the streamlines given by the relations ~ < 0 (pe-2/3). It was shown in [11] 
that equalization of the concentration of substance arriving from the diffusion boundary layer to its value in 
the flow core occurs at a dimensionless distance onthe order of Pe -I/9 << 1 from the body surface. Hence~ 
when Pe- I/s << 1 the usual condition of nondepletion of the solution is satisfied in the vicinity of the inflow 
point. 

We note here that the solidity of the dissolving surface plays a significant role in equalization of the con- 
centration. For a flow with closed streamlines occurring near a dissolving liquid surface there is no equaliza- 
tion, and t r a n s f e r  of the diffusing substance is m o r e  complex,  e.g. ,  [12-14]. 

For  function f ( 0 ) we obtain 

2 f(O)=2(1--~t~) a2,~h(n+ l) ~ P2n(~t). (6) 
n~-I 

Using express ions  (2) we have 0- = 0 ,  0 + = ~/2. For  the dimensionless  total diffusive flow onto the inner surface  
of the ladle 

I = 2.96 Pe ~/3 = 2.96 J*0 ~/3 (~pV D) -I/3. (7) 

It is apparent  f rom (7) that the total  diffusive flow of substance inc reases  in propor t ion  to j2 /~  i .e . ,  with 
inc rease  in the s t rength  of the c u r r e n t  source  the flow of diffusing substance can be grea t ly  increased.  

We now de te rmine  the law of var ia t ion  of the concentra t ion in the flow co re  with t ime.  In unit t ime the 
substance dissolved in the ladle (in the flow core) changes by  an amount  V I dc0/dtl  ~ equal to the total  diffusive 
flow to the ladle su r face  aDc0I. 

This  gives the following equation for  the concentra t ion 

dcold'r = ~ 1.41Pe-2/3co, co ( ' r= 0 ) =  I, (8) 

whose solution has  the fo rm 

co (~) = exp ( ~  1.41 Pc-2/S ~). (9) 

Expres s ion  (9) shows that  the concentra t ion in the flow core  slowly d e c r e a s e s  with t ime f rom unity to 
z e r o .  

N O T A T I O N  

a~ radius  of body; U~ cha rac t e r i s t i c  flow veloci ty;  pp density of fluid; v~ viscosi ty;  ~b, d imensionless  
s t r e a m  function; c0~ concentra t ion in flow core ;  c,  d imensionless  concentrat ion;  D, diffusion coefficient;  j~ 
e l ec t r i c  c u r r e n t  densi ty;  Jo, cu r r en t  s t rength;  #e,  magnetic  permeabi l i ty  of fluid; Re = aUv-  1 Reynolds num-  
be r ;  Pe = aUD -1, P~cle t  number;  ~ =/~ej2a2p-tU -2, d imensionless  p a r a m e t e r ;  r ( s ) ,  gamma function; P2n(# ) ,  
Legendre  polynomial  of deg ree  2n; t~ t ime;  r = U t / a ,  dimensionless  t ime;  V = (2 /3 )va  3, volume of ladle. 
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R O L E  OF  R H E O L O G Y  IN T H E  E X T E N S I O N  O F  

P O L Y M E R  M E L T S  BY A C O N S T A N T  F O R C E  

A.  N. P r o k u n i n  a n d  N. G. P r o s k u r n i n a  UDC 532.5:532.135 

The uniform extension of an elast ic  liquid by a constant force  is exper imenta l ly  investigated, 
and the exper iment  is compared with theory.  

In [1] a sys tem of equations with four rheological  constants was wri t ten  to desc r ibe  any noninert ial  uni- 
form extension.* These  equations were  as follows 

1 d__~ d- (L-k 1)(La-- 1) exp(--L) = F(x), 
~, dx 6Z,2 

L = ~ (X - -  1) z (~ ~- 4L ~- 1), (v = t/0; / '  = u0), (1) 
2L 9. 

~'O (r = - -  = (l--s)  (L2--~ -i) + 3srexp (L). 

These  equations wore  der ived using the c lass ica l  potential  of the grid theory  of high elast ici ty.  

In the extension of a sample by a constant  fo rce  F,  one end is r igidly fixed, and the other  moves under 
the action of F (a d iagram is shown in Fig. 1). In this case,  the dimensionless  s t r e s s  is 

( r = %  P._L, % _  OF . (2) 

P rlPo 
The express ion  for the deformat ion ra te  under tension is F = (1/7) (dl /dr)  [3]. Using the incompress ibi l i ty  
conditions for the liquid, P010 = pI, it may be wri t ten  in the form 

r : ~  1 dp (3) 
p dr 

Differentiating Eq. (2) with r e spec t  to ~ and using Eq. (3), the following resu l t  is obtained 

*Surface tension was neglected. 
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